
CHAPTER 18. THEORETICAL FOUNDATIONS 

 

18.1 GENERAL DESCRIPTION AND METHOD, USED 

 

The computational processor SP LIRA 10 is designed to solve linear and nonlinear static and 

dynamic problems of continuum mechanics. The theory is presented in [18.3–18.5, 18.7, 18.11, 

18.14, 18.29, 18.39, 18.41, 18.47, 18.48, 18.54, 18.56, 18.60, 18.62, 18.66, 18.71, 18.75, 18.79]. 

The Finite Element Method (FEM) is applied. The main convergence theorems and FEM error 

estimates are proved in [18.15, 18.17–18.20, 18.28, 18.44, 18.46, 18.49, 18.50, 18.58, 18.59, 18.80–

18.88], the study of finite elements (FE) used in SP LIRA 10 is carried out in [18.33, 18.59, 18.78, 

18.81, 18.82]. 

 

Structures for calculation: 

• flat and spacial trusses and frames; 

• plates; 

• massive bodies; 

• combined systems. 

 

Loads: 

• which are distributed over a region or face, specified in the global coordinate system, in 

which the node coordinates are defined, or in the local coordinate system associated with the 

element; 

• the concentrated (nodal), specified in the global coordinate system or in the local 

coordinate system associated with the node; 

• thermal, set for an element, only in a static task; 

• for dynamic tasks — impulse, periodic impact, wind, seismic. 

 

Boundary conditions, including the inhomogeneous ones, are set to determine the location and 

rotation of points in the global coordinate system. 

Absolutely rigid bodies (ARBs) are defined by non-intersecting sets of nodes. 

 

SP LIRA 10 implements the INSTALLATION system, which allows to mount and (or) 

demonstrate groups of linear and non-linear FE at each stage in accordance with the sequence of 

design calculation. Stability is checked after each stage. 

In SP LIRA 10 there is a system Variation of models, which calculates the expected 

variations of stresses for topologically equivalent schemes with different stiffness characteristics, 

and the BRIDGE system, used to build lines and calculate results for moving loads. 
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18.2 LINEAR STATIC PROBLEM 

 

The solution U of a linear static problem for all possible displacements V satisfies the 

equalities of the principle of possible displacements: 

𝑎0(𝑈, 𝑉) = 𝑞(𝑉),     (18.2.1) 

where 𝑎0(𝑈, 𝑉), 𝑞(𝑉) — are the functionals of possible work of internal and external forces, 

linear in V, the functional 𝑎0(𝑈, 𝑉) is linear in U as well, symmetric and is positively defined. 

FEM reduces the problem (18.2.1) to a system of linear algebraic equations (SLAE), solving 

which by the Gauss method, the displacements of the nodes can be determined. To speed up the 

solution of the SLAE, the unknowns are renumbered, which reduces the filling of the matrix 

[18.53]. Stresses (forces) are calculated further for each FE according to known formulas of the 

theory of elasticity. 

 

 

18.3 LINEAR DYNAMIC PROBLEM 

 

The solution U of a linear dynamic problem for all possible displacements V satisfies the 

equalities: 

𝑏(𝑈″, 𝑉) + 𝑐(𝑈′, 𝑉) + 𝑎0(𝑈, 𝑉) = 𝑞(𝑉),   (18.3.1) 

 

where 𝑏(𝑈, 𝑉), 𝑐(𝑈, 𝑉) — are symmetric positive definite functionals of possible work of 

inertial forces and forces of resistance to movement. Displacements and external forces depend on 

time t, and the dashes denote differentiation with respect to t. Initial or periodic conditions are 

added: 𝑈(0) = 𝑈0, 𝑈′(0) = 𝑈1, 𝑈(0) = 𝑈(𝑇0), 𝑈′(0) = 𝑈′(𝑇0), where 𝑇0 is the period. 

Problems (18.3.1) are solved in SP LIRA 10 by the Fourier expansion method in terms of 

natural vibrations [18.36, 18.38, 18.74], recommended by construction norms. Forms 𝑉𝑘(𝑥) and 

frequencies 𝜔𝑘 of natural oscillations are solutions of the eigenvalue problem: 

 

𝑎0(𝑉, 𝑊) = 𝜔2𝑏(𝑉, 𝑊),     (18.3.2) 

and are determined by the subspace iteration method [18.53] using a modified Jacobi method. 

Problem (18.3.1) reduces to second-order independent ordinary differential equations with constant 

coefficients, which are easily solved analytically. The accuracy of the method depends on the 

number of computed shapes. The influence of non-calculated shapes is not taken into account in SP 

LIRA 10. For impulse, periodic action, wind and seismic, further calculations are made according 

to the design standards recommendations. 

Problems (18.3.1) with initial conditions are solved in SP LIRA 10 also in the DYNAMICS+ 

system by the finite difference method according to an unconditionally stable scheme [18.9, 18.10, 

18.25]: 

            𝑏(𝛾𝑛𝑈, 𝑉) + 𝑐(𝛽𝑛𝑈, 𝑉) + 𝑎0(𝛼𝑛𝑈, 𝑉) = 𝑞𝑛(𝑉),                         (18.3.3) 

 

𝜃 — time step, 𝑡𝑛 = 𝑛𝜃, 𝑈𝑛 = 𝑈(𝑡𝑛), 

𝛿𝑛𝑈 = (𝑈𝑛+1 − 𝑈𝑛)/𝜃,  𝛽𝑛𝑈 = (𝑈𝑛+1 − 𝑈𝑛−1)/2𝜃 = (𝛿𝑛(𝑈) + 𝛿𝑛−1(𝑈))/2, 

𝛾𝑛𝑈 = (𝑈𝑛+1 − 2𝑈𝑛 + 𝑈𝑛−1)/𝜃2,  𝛼𝑛𝑈 = (𝑈𝑛+1 + 𝑈𝑛−1)/2. 

The load is a piecewise linear function of time.  

The scheme error (18.3.3) is proportional to 𝜃2.  
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18.4 PROBLEMS OF ELASTIC STABILITY OF AN UNDEFORMED SCHEME 

 

Problems of elastic stability of an undeformed scheme [18.1, 18.2, 18.27] are similar to the 

eigenvalue problem (18.3.2). The critical values 𝜆𝑘 and the corresponding forms of buckling 𝑉𝑘(𝑥) 

are solutions to the problem: 

𝑎0(𝑉, 𝑊) + 𝜆𝑎𝜎
′ (𝑈, 𝑉, 𝑊) = 0,     (18.4.1) 

where 𝑎𝜎
′ (𝑈, 𝑉, 𝑊) is the stability functional [18.27, 18.52], depending on the stresses 

(forces) obtained as a result of solving the linear static problem. 

The smallest of the positive λ_k is called the stability factor or the critical value for a given 

load. Problems (18.4.1) are solved in SP LIRA 10 by the method of subspace iterations. The 

implemented methods make it possible to study not only the compressive stability but also flexural-

torsional forms of buckling. 

 

 

18.5 NONLINEAR STATIC PROBLEMS 

 

SP LIRA 10 allows solving non-linear static and dynamic problems: geometrically non-linear, 

non-linear elastic, elastic-plastic, with one-sided constraints, including friction, problems of 

mechanics of granular medium (soils). The existence and uniqueness of a solution to nonlinear 

problems were studied in [18.8, 18.16, 18.31, 18.32, 18.35, 18.37, 18.55, 18.61, 18.68]. 

The solution U of a nonlinear static problem for all possible displacements V satisfies the 

equalities: 

𝑎(𝑈, 𝑉) = 𝑞(𝑉),                                                         (18.5.1)  

The functional a(U,V) of the possible work of internal forces is linear in V and not linear in U. 

Non-linear static problems with continuously differentiable non-linearities (geometric non-

linearity, non-linear elasticity) are solved by the step method [18.37, 18.51]: 

 

𝑎′(𝑈𝑛, 𝑈𝑛+1 − 𝑈𝑛, 𝑉) = (𝜃𝑛+1 − 𝜃𝑛)𝑞(𝑉),    (18.5.2) 

где 𝑎′(𝑈, 𝑊, 𝑉) — is the derivative of 𝑎(𝑈, 𝑉), 

𝑈0 = 0, 

𝑛 = 1, … ,  𝑁, 

0 = 𝜃0 < 𝜃1 <. . . < 𝜃𝑁 = 1.  

Automatic step selection is used. The criterion is the change in geometry and stiffness. If the 

derivative 𝑎′(𝑈, 𝑊, 𝑉) is positively defined, the construction is stable and the error of the method 

(18.5.2) is proportional to the maximum step. The step method for geometrically nonlinear 

problems allows one to investigate the stability of a deformed circuit [18.52]. 

SP LIRA 10 implements the calculation of geometrically nonlinear problems after buckling: 

for a load at which buckling occurs, a stable equilibrium state is determined, after which the 

calculation continues with a step method. 

When solving the geometrically nonlinear and stability problems, the presence of ARB is 

taken into account in accordance with [18.52]. 
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18.6 PROBLEMS WITH ONE-SIDED CONSTRAINTS, FRICTION AND PROBLEMS OF A GRANULAR 

MEDIUM MECHANICS 

 

Problems with one-sided constraints, as well as elastoplastic, with friction and problems of 

mechanics of a granular medium, are formulated as: 

𝑎0(𝑈, 𝑉) + 𝑑(𝑈, 𝑉) = 𝑞(𝑉),     (18.6.1) 

где 𝑑(𝑈, 𝑉) = 𝑎(𝑈, 𝑉) − 𝑎0(𝑈, 𝑉), 

and are solved using the iterative method [18.12]: 

𝑎0(𝑈𝑛+1, 𝑉) + 𝑑(𝑈𝑛, 𝑉) = 𝑞(𝑉).    (18.6.2) 

 

 

18.7 NONLINEAR DYNAMIC PROBLEMS 

 

Since the Fourier method is not applicable to nonlinear dynamic problems, such problems are 

solved in SP LIRA 10 in the DYNAMICS+ system using similar (18.3.3) difference schemes 

[18.12, 18.25]. 

 

 

18.8 FINITE ELEMENTS OF A LINEAR STATIC PROBLEM 

 

In accordance with [18.59], the description of a finite element must contain: 

• the task, for the solution of which it is intended; 

• the domain Ω occupied by the finite element and its nodes 𝑋𝑙; 

• a number of nodal unknowns; 

• a number 𝐻𝜇 of linear combinations of basic functions 𝜇𝑘 or their explicit form. 

The basic functions depend only on the geometric characteristics of the element and the order 

of the derivatives m in the functional of the possible work of internal forces. In the presence of 

bending or constrained torsion, the order of the derivatives is equal to two, in other cases, to one. 

Constructions are manufactured for standard FE 𝛺0. The basic functions and the order of error τ are 

given in [18.33, 18.59, 18.73].  

Let us denote 𝐶𝑘(𝛺 ) as the set of k times continuously differentiable functions on 𝛺; 𝑃𝑟(𝛺 ) 

as the set of polynomials of degree at most 𝑟 on 𝛺; 𝑄𝑟(𝛺 ) as the set of products of polynomials of 

degree at most r in each variable, 𝑃𝑟(𝛺 ) ⊂ 𝑄𝑟(𝛺 ). 

 

Rod FE 

Domain FE(𝛺0) — segment [0, l] with nodes 𝑋1 = 0, 𝑋2 = 𝑙; nodal unknowns  𝑢(𝑋𝑖) at 

𝑚 = 1, 𝑢(𝑋𝑖), 𝑢′(𝑋𝑖) at 𝑚 = 2. The basic functions 𝜇𝑘 satisfy homogeneous equilibrium equations 

of order 2m, and therefore give an exact solution to the problem. The basic functions at a constant 

cross-section have the form (𝑠 = 𝑥1/𝑙): 

at 𝑚 = 1                               𝜇1 = 1 − 𝑠,   𝜇2 = 𝑠,                                  (18.8.1) 

at 𝑚 = 2  

𝜇1 = 1 − 3𝑠2 + 2𝑠3, 𝜇2 = 𝑙(𝑠 − 2𝑠2 + 𝑠3), 𝜇3 = 3𝑠2 − 2𝑠3, 𝜇4 = 𝑙(−𝑠2 + 𝑠3).       (18.8.2) 

For constrained torsion, the basic functions are linear combinations of polynomials of the first 

degree, and hyperbolic sine and cosine. 
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Two-dimensional FEs 

𝛺0 — triangle with vertices (0, 0), (1, 0), (0, 1), unit square, quadrilateral with vertices (1, 0), 

(0, 1), (a, 0), (0, b), a<0, b<0. The linear transformation converts the corresponding 𝛺0 into an 

arbitrary triangle, rectangle or convex quadrilateral. The quadrilateral is divided by diagonals into 

four triangles 𝛺𝑞. Knots are at the vertices, if specified, and at the midpoints of the sides. 

 

Three-dimensional FEs 

𝛺0 are single tetrahedron, cube, right triangular prism and tetrahedral pyramid. The nodes are 

at the vertices, if specified, and at the midpoints of the edges. 

 

Two- and three-dimensional elements at m=1 

The nodal unknowns for all elements are 𝑢(𝑋𝑖). 

1. Triangle, 𝜏 = 1: 

𝐻𝜇 =  P1(𝛺). The basic functions on 𝛺0 have the form: 

𝜇1 = 1 − 𝑠1 − 𝑠2,  𝜇2 = 𝑠1,  𝜇3 = 𝑠2.     (18.8.3) 

2. Rectangle, 𝜏 = 1: 

𝐻𝜇 =  Q1(𝛺). The basic functions on 𝛺0 have the form: 

𝜇1 = 𝑟1𝑟2,   𝜇2 = 𝑠1𝑟2,   𝜇3 = 𝑟1𝑠2,   𝜇4 = 𝑠1𝑠2,   𝑟𝑖 = 1 − 𝑠𝑖. (18.8.4) 

3. Quadrilateral: 

Basic functions satisfy the conditions: 

𝜇𝑘 ∈ 𝑃2(𝛺𝑞),   𝜇𝑘 ∈ 𝐶1(𝛺),   𝐻𝜇 ⊃ 𝑃1(𝛺),   𝜏 = 1. 

4. Triangle with nodes in the midpoints of the sides, 𝜏 = 2: 

𝐻𝜇 =  P2(𝛺). The basic functions on 𝛺0 have the form: 

𝜇1 = 1 − 3𝑠1 − 3𝑠2 + 2𝑠1
2 + 4𝑠1𝑠2 + 2𝑠2

2,  𝜇2 = −𝑠1 + 2𝑠1
2,  𝜇3 = −𝑠2 + 2𝑠2

2, 

𝜇4 = 4𝑠1𝑠2, 𝜇5 = 4𝑠2 − 4𝑠1𝑠2 − 4𝑠2
2,  𝜇6 = 4𝑠1 − 4𝑠1𝑠2 − 4𝑠1

2.   (18.8.5) 

5. Quadrilateral with nodes in the midpoints of the sides, 𝜏 = 2: 

The basic functions satisfy the conditions: 𝜇𝑘 ∈ 𝑃2(𝛺𝑞),  𝜇𝑘 ∈ 𝐶1(𝛺),  𝐻𝜇 = 𝑃2(𝛺). 

6. Tetrahedron, 𝜏 = 1: 

𝐻𝜇 =  P1(𝛺). The basic functions on 𝛺0 have the form: 

𝜇1 = 1 − 𝑠1 − 𝑠2 − 𝑠3,  𝜇2 = 𝑠1,  𝜇3 = 𝑠2,  𝜇4 = 𝑠3.   (18.8.6) 

7. Parallelepiped, 𝜏 = 1: 

𝐻𝜇 =  P1(𝛺). The basic functions on 𝛺0 have the form: 

𝜇1 = 𝑟1𝑟2𝑟3, 𝜇2 = 𝑠1𝑟2𝑟3, 𝜇3 = 𝑟1𝑠2𝑟3, 𝜇4 = 𝑠1𝑠2𝑟3, 

𝜇5 = 𝑟1𝑟2𝑠3, 𝜇6 = 𝑠1𝑟2𝑠3, 𝜇7 = 𝑟1𝑠2𝑠3, 𝜇8 = 𝑠1𝑠2𝑠3, 𝑟𝑖 = 1 − 𝑠𝑖.  (18.8.7) 

8. Triangular prism, 𝜏 = 1: 

𝐻𝜇 ⊃  P1(𝛺). The basic functions on 𝛺0 have the form: 

𝜇1 = (1 − 𝑠1 − 𝑠2)𝑟3, 𝜇2 = 𝑠1𝑟3, 𝜇3 = 𝑠2𝑟3,  

𝜇4 = (1 − 𝑠1 − 𝑠2)𝑠3, 𝜇5 = 𝑠1𝑠3, 𝜇6 = 𝑠2𝑠3, 𝑟3 = 1 − 𝑠3   (18.8.8) 

9. Tetrahedral pyramid, 𝜏 = 1: 𝐻𝜇 =  P1(𝛺) + {𝑥1 ∗ 𝑥2/(1 − 𝑥3)}. 

10. Tetrahedron with nodes in the midpoints of edges, 𝜏 = 2: 

𝐻𝜇 =  P2(𝛺). 

11. Parallelepiped with nodes in the middle of edges, 𝜏 = 2: 

𝑃2(𝛺) ⊂ 𝐻𝜇 ⊂ 𝑃4(𝛺). 

12. Triangular prism with nodes in the midpoints of the edges, 𝜏 = 2: 
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𝑃2(𝛺) ⊂ 𝐻𝜇 ⊂ 𝑃3(𝛺). 

13. Tetrahedral pyramid with nodes in the middle of the edges, 𝜏 = 2:  

𝐻𝜇 =  P2(𝛺) + {𝑥1
2 ∗ 𝑥2/(1 − 𝑥3), 𝑥1 ∗ 𝑥2

2/(1 − 𝑥3), 𝑥1 ∗ 𝑥2/(1 − 𝑥3), 𝑥1 ∗ 𝑥2 ∗ 𝑥3/(1 − 𝑥3)}. 

 

For the elements10, 11 и 12 with nodes on the edges, the equations of the faces that do not 

contain the 𝑋𝑘, have the form 𝑙𝑘𝑖(𝑠1, 𝑠2, 𝑠3) = 0, where 𝑙𝑘𝑖(𝑠1, 𝑠2, 𝑠3) re polynomials of the first 

degree. For the vertex of such faces, one is less than for the middle of the edge. An additional 

polynomial for a vertex corresponds to the equation of a plane passing through the midpoints of the 

edges containing this vertex. Then the basic functions are the products of the constructed 

polynomials and the coefficient, which is calculated from the condition 𝜇𝑘(𝑋𝑘) = 1. The equalities 

𝜇𝑘(𝑋𝑖) = 0,  𝑖 ≠ 𝑘 are satisfied by construction. 

The basic functions of elements 6–9 transform the standard FE into an arbitrary one. 

 

Two-dimensional bending elements at 𝒎 = 𝟐 

Nodal unknowns — 𝑢(𝑋𝑖), 𝛼1(𝑋𝑖) = 𝜕𝑢/𝜕𝑥2(𝑋𝑖), 𝛼2(𝑋𝑖) = −𝜕𝑢/𝜕𝑥1(𝑋𝑖). 

14. Rectangle, 𝜏 = 2: 

𝐻𝜇 ⊃ 𝑃3(𝛺). The basic functions on the rectangle 𝛺0 have the form: 

𝜇𝑖 = 𝜙𝑖(1 − 𝑠1, 1 − 𝑠𝑠), 𝜇𝑖+3 = 𝜙𝑖(𝑠1, 1 − 𝑠𝑠), 𝜇𝑖+6 = 𝜙𝑖(1 − 𝑠1, 𝑠𝑠), 𝜇𝑖+9 = 𝜙𝑖(𝑠1, 𝑠𝑠), 

𝜙1 = 𝑠1𝑠2(−1 + 3𝑠1 + 3𝑠2 − 2𝑠1
2 − 2𝑠2

2), 𝜙2 = 𝑠1𝑠2
2(1 − 𝑠2), 𝜙3 = 𝑠1

2𝑠2(1 − 𝑠1). (18.8.9) 

15. Triangle, 𝜏 = 1: 

Basic functions satisfy the following conditions: 𝑃4(𝛺) ⊃ 𝐻𝜇 ⊃ 𝑃2(𝛺). 

16. Quadrilateral, 𝜏 = 1: 

Basic functions satisfy the following conditions: 𝜇𝑘 ∈ 𝑃3(𝛺𝑞), 𝜇𝑘 ∈ 𝐶1(𝛺), 𝐻𝜇 ⊃ 𝑃2(𝛺). 

17. Triangle with nodes in the midpoints of the sides, 𝜏 = 1: 

Basic functions satisfy the conditions:𝑃4(𝛺) ⊂ 𝐻𝜇 ⊂ 𝑃5(𝛺). 

18. Quadrilateral with nodes in the midpoints of the sides, 𝜏 = 2: 

Basic functions satisfy the conditions: 𝜇𝑘 ∈ 𝑃5(𝛺𝑞), 𝜇𝑘 ∈ 𝐶2(𝛺), 𝐻𝜇 ⊃ 𝑃3(𝛺). 

The calculation of the basic functions of quadrilaterals 3, 5 and two-dimensional bending 

elements 14–17 is reduced to solving systems of linear equations, which is performed by the 

program. 

 

 

18.9 FUNCTIONALS OF VIRTUAL WORKS OF A LINEAR PROBLEM 

 

Let us denote 𝛺 as a three-dimensional domain with boundary 𝐵, 𝑥 ∈ 𝛺 are the independent 

variables, 𝑈(𝑥) are displacements, 𝑉, 𝑊 are possible displacements, 𝛼(𝑥) are rotations, 𝑓 are 

external forces, 𝜎𝑖𝑗(𝑈) are stresses,  𝜀𝑖𝑗(𝑈),  𝑒𝑖𝑗(𝑈) are linear and geometrically non-linear 

deformations, 𝐸,  𝐺,  𝐾,  𝜇, are Young’s moduli, shear, volumetric deformation and Poisson’s ratio, 

0 <= 𝜇 < 1/2, 𝐺 = 𝐸/(1 + 𝜇), 𝐾 = 𝐸/(1 − 2𝜇), 𝛬 = 𝜇/(1 − 2𝜇), 𝜌 is density, 𝑇 is temperature, 

𝜁 is thermal deformation coefficient. The summation over repeated indices is used, the indices 

𝑖,  𝑗,  𝑘,  𝑙 take the values 1, 2, 3. For a three-dimensional problem, plates and rods, the functionals 

of possible works are given: 

• internal forces 𝑎0(𝑈, 𝑉); 

• external forces (𝑞, 𝑉); 
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• temperature 𝑔𝑇(𝑉); 

• inertial forces 𝑏(𝑈, 𝑉); 

• functional for the stability problem 𝑎𝜎
′ (𝑈, 𝑉, 𝑊). 

Three-dimensional problem 

Linear deformations are related to displacements by Cauchy dependencies: 

𝜀𝑖𝑗(𝑈) = (𝜕𝑈𝑖/𝜕𝑥𝑗 + 𝜕𝑈𝑗/𝜕𝑥𝑖)/2.    (18.9.1) 

Hooke's law in the orthotropic case has the form: 

𝜎𝑖𝑗(𝑈) = 𝐺(𝜀𝑖𝑗(𝑈) + 𝛿𝑖𝑗𝛬𝜀𝑘𝑘(𝑈).                                   (18.9.2) 

The functionals have the form: 

𝑎0(𝑈, 𝑉) = ∫ 𝐺(𝜀𝑖𝑗(𝑈) + 𝛿𝑖𝑗𝛬𝜀𝑘𝑘(𝑈))
𝛺

𝜀𝑖𝑗(𝑉)𝑑𝑥,                     (18.9.3) 

(𝑞, 𝑉) = ∫ 𝑓𝑖𝑈𝑖𝑑𝑥
𝛺

,     (18.9.4) 

𝑏(𝑈, 𝑉) = ∫ 𝜌𝑈𝑖𝑉𝑖𝑑𝑥
𝛺

,         (18.9.5) 

𝑔𝑇(𝑉) = ∫ 𝐾𝜁𝑇𝑒𝑖𝑖(𝑉)𝑑𝑥
𝛺

.                                  (18.9.6) 

𝑎𝜎
′ (𝑈, 𝑉, 𝑊) = ∫ 𝜎𝑖𝑗(𝑈) ⋅

𝛺
𝑑2𝑒𝑖𝑗(𝑉, 𝑊)𝑑𝑥,       (18.9.7) 

где 𝑑2𝑒𝑖𝑗(𝑉, 𝑊) = (𝜕𝑉𝑘/𝜕𝑥𝑖 ⋅ 𝜕𝑊𝑘/𝜕𝑥𝑗 + 𝜕𝑊𝑘/𝜕𝑥𝑖 ⋅ 𝜕𝑉𝑘/𝜕𝑥𝑗)/2. 

 

Plates 

The 𝑥3 axis is orthogonal to the middle plane of the plate, which occupies the two-

dimensional domain  𝛺0 with the boundary 𝐵0. Plate thickness 𝛿, 𝐼 = 𝛿3/12, axes 𝑥1 and  𝑥2 lie in 

the median plane, 𝐸0 = 𝐸/(1 − 𝜇2). Indices 𝑟,  𝑞 r, q take the values 1, 2. The functional of the 

possible work of internal forces has the form: 

𝑎0(𝑈, 𝑈) = 𝑎𝑁(𝑈, 𝑈) + 𝑎𝑀(𝑈, 𝑈) + 𝑎𝑄(𝑈, 𝑈),  (18.9. 8) 

где 𝑎𝑁(𝑈, 𝑈) = ∫ 𝛿(𝐸0(
𝜕𝑢1

𝜕𝑥1
+ 𝜇𝜕𝑢2/𝜕𝑥2)

𝛺0
𝜕𝑢1 𝜕𝑥1⁄ + 𝐸0 (

𝜇𝜕𝑢1

𝜕𝑥1
+

𝜕𝑢1

𝜕𝑥1
) 𝜕𝑢2 𝜕𝑥2⁄ + 

+𝐺(
𝜕𝑢1

𝜕𝑥2
+

𝜕𝑢2

𝜕𝑥1
)2/2)𝑑𝑥1𝑑𝑥2,             (18.9.9) 

𝑎𝑀(𝑈, 𝑈) = ∫ 𝐼(𝐸0(𝜕𝛼2/𝜕𝑥1 + 𝜇𝜕𝛼1/𝜕𝑥2)
𝛺0

𝜕𝛼2/𝜕𝑥1 + 

+𝐸0(−𝜇𝜕𝛼2/𝜕𝑥1 + 𝜕𝛼1/𝜕𝑥2)𝜕𝛼1/𝜕𝑥2 + 𝐺(𝜕𝛼2/𝜕𝑥2 − 𝜕𝛼1/𝜕𝑥1)2/2)𝑑𝑥1𝑑𝑥2  (18.9.10) 

𝑎𝑄(𝑈, 𝑈) = 𝑘 ∫ 𝛿
𝛺0

𝐺((𝜕𝑢3/𝜕𝑥1 + 𝛼2)2 + (𝜕𝑢3/𝜕𝑥2 − 𝛼1)2)𝑑𝑥1𝑑𝑥2/2,𝑘 = 5/6. (18.9.11) 

Functional (18.9.11) takes into account the effect of transverse shear. 

In the absence of transverse shear, i.e. with 𝑎𝑄(𝑈, 𝑈) = 0, we get: 

𝑎𝑀(𝑈, 𝑈) = ∫ 𝐼(𝐸0(𝜕2𝑢3/𝜕𝑥1
2 + 𝜇𝜕2𝑢3/𝜕𝑥2

2)
𝛺0

𝜕2𝑢3/𝜕𝑥1
2 + 

+𝐸0(𝜇𝜕2𝑢3/𝜕𝑥1
2 + 𝜕2𝑢3/𝜕𝑥2

2)𝜕2𝑢3/𝜕𝑥2
2 + 2𝐺(𝜕2𝑢3/𝜕𝑥1𝜕𝑥2)2)𝑑𝑥1𝑑𝑥2,   (18.9.12) 

With the absence of bending, i.e. for 𝑎𝑀(𝑈, 𝑈) = 𝑎𝑄(𝑈, 𝑈) = 0, we get 𝑎0(𝑈, 𝑈) =

𝑎𝑁(𝑈, 𝑈). 

The functional 𝑎𝑁(𝑈, 𝑈) was obtained for a plane stress state, i.e. 𝜎33 = 0. In the case of 

plane deformation, i.e. 𝜀33 = 0, в (18.9.9) first 𝐸0 = 𝐸(1 − 𝜇2) is set and then 𝜇 is replaced by 

𝜇/(1 − 𝜇). 

When taking into account the elastic foundation, a term is added to 𝑎0(𝑈, 𝑈): 

𝑐0(𝑈, 𝑈) = ∫ (𝐶1𝑢3
2 + 𝐶2(𝜕𝑢3/𝜕𝑥1)2 + 𝐶2(𝜕𝑢3/𝜕𝑥2)2)𝑑𝑥2𝑑𝑥1𝛺0

,  (18.9.13) 
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where 𝐶1, 𝐶2 are the bed coefficients of the Pasternak model. 

The functional 𝑎0(𝑈, 𝑈) does not contain the rotation 𝛼3 = (𝜕𝑢2/𝜕𝑥1 − 𝜕𝑢1/𝜕𝑥2)/2, thus in 

[18.90] it was proposed to add a term to 𝑎𝑁(𝑈, 𝑈): 

∫ 𝐺𝛿(𝛼3 − (𝜕𝑢2/𝜕𝑥1 − 𝜕𝑢1/𝜕𝑥2)/2)2𝑑𝑥1𝑑𝑥2𝛺0
.   (18.9.14) 

Then, 

(𝑔, 𝑈) = ∫ (𝑝𝑖𝑢𝑖 + 𝑚2𝛼2 + 𝑚3𝛼3)𝑑𝑥1𝑑𝑥2𝛺0
,    (18.9.15) 

𝑏(𝑈, 𝑈) = ∫ 𝜌(𝛿𝑢𝑖𝑢𝑖 + 𝐼(𝛼2
2 + 𝛼3

2))𝑑𝑥1𝑑𝑥2𝛺0
,   (18.9.16) 

The temperature distribution over the thickness is linear:  𝑇(𝑥) = 𝑇1 − 𝑥3𝑇3, тогда 

𝑔𝑇(𝑈) = ∫ 𝐾1𝜁(𝛿𝑇1(𝜕𝑢1/𝜕𝑥1 + 𝜕𝑢2/𝜕𝑥2)
𝛺0

+ 𝐼𝑇3(𝜒11 + 𝜒22))𝑑𝑥1𝑑𝑥2,  𝐾1 = 𝐸/(1 − 𝜇).    (18.9.17) 

Functional for the stability problem: 

𝑎𝜎
′ (𝑈, 𝑉, 𝑉) = ∫ [𝑁𝑟𝑞𝜕

𝛺

𝑣3 𝜕𝑥𝑝⁄ ⋅ 𝜕𝑣3 𝜕𝑥𝑞⁄ + 𝑁11(𝜕𝑣2 𝜕𝑥1)2⁄ + 𝑁22(𝜕𝑣1 𝜕𝑥2)2⁄ + 

+𝑁12(𝜕𝑣1 𝜕𝑥1⁄ ⋅ 𝜕𝑣1 𝜕𝑥2⁄ + 𝜕𝑣2 𝜕𝑥1⁄ ⋅ 𝜕𝑣2 𝜕𝑥2⁄ ) + 2𝜕(𝑀1𝑟𝛼1) 𝜕𝑥𝑟⁄ ⋅ 𝜕𝑣2 𝜕𝑥1 −⁄

− 2𝜕(𝑀2𝑟𝛼2) 𝜕𝑥𝑟⁄ ⋅ 𝜕𝑣1 𝜕𝑥2⁄ − 2(𝑚2𝛼1𝛼3 − 𝑚1𝛼2𝛼3) + 𝑚33(𝛼1
2 + 𝛼2

2) − 

−𝜕(𝑀𝑟𝑞𝛼𝑟𝛼3)/𝜕𝑥𝑞]𝑑𝑥1𝑑𝑥2 /2.         (18.9.18) 

where 𝛼1 = 𝜕𝑢3/𝜕𝑥2, 

𝛼2 = −𝜕𝑢3/𝜕𝑥1, 

𝑁𝑖𝑞 = ∫ 𝜎𝑖𝑞𝑑𝑥3
𝛿/2

−𝛿/2
, 

𝑀𝑟𝑞 = − ∫ 𝑥3𝜎𝑟𝑞𝑑𝑥3
𝛿/2

−𝛿/2
, 

𝑚2 = ∫ 𝑥3𝑓1𝑑𝑥3
𝛿/2

−𝛿/2
, 

𝑚1 = − ∫ 𝑥3𝑓2𝑑𝑥3
𝛿/2

−𝛿/2
. 

The first sum in (18.9.18) is the bending due to compression, the last ones are the influence of 

bending. 

Terms 

𝑁11(𝜕𝑣2/𝜕𝑥1)2 + 𝑁22(𝜕𝑣1/𝜕𝑥2)2 + 𝑁12(𝜕𝑣1/𝜕𝑥1 ⋅ 𝜕𝑣1/𝜕𝑥2 + 𝜕𝑣2/𝜕𝑥1 ⋅ 𝜕𝑣2/𝜕𝑥2) are 

significant though when using the method of expansion in terms of a small parameter (thickness), 

they are assumed to be small [18.60, 18.89]. For example, problems of stability of centrally 

compressed rods with sections - π, I, Z etc., can also be modeled with plates. If in (18.9.18) the 

specified terms are not taken into account, the critical force increases by 30–50%. 

The terms containing 𝛼3 should be introduced into (18.9.18) only if the functional 𝑎0(𝑈, 𝑈) of 

the work of internal forces contains (18.9.14). 

 

Rods 

The axis 𝑥1 is directed along the rectilinear axis of the rod, the segment [0, 𝑙] = 𝛺0, the axes 

𝑥2, 𝑥3 are the main central axes of the section 𝐴, |𝐴| — sectional area, 𝐼2 = ∫ 𝑥3
2

𝐴
𝑑𝐴,𝐼3 = ∫ 𝑥2

2
𝐴

𝑑𝐴 

— inertia moments, 𝑥2
0,𝑥3

0 — coordinates of the center of torsion. The primes denote differentiation 

with respect to 𝑥1, 𝐼𝜔 is the sectorial moment of inertia. 

𝑎0(𝑈, 𝑈) = ∫ (𝐸|𝐴|𝑢1
′ 2

+ 𝐸𝐼2𝑢3
″ 2

+ 𝐸𝐼3𝑢2
″ 2

+ 𝐺𝐼1𝛼 ′
1
2

/2 + 𝐸𝐼𝜔𝛼″
1
2

𝑙

0

+ 2(𝐸𝐼3𝑢2
‴ )2/𝐺𝐹3) + 

+2(𝐸𝐼2𝑢3
‴ )2/𝐺𝐹2)𝑑𝑥.     (18.9.19) 
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The elastic foundation is modeled by a rectangle orthogonal to the 𝑥3 axis. The width of the 

rectangle b corresponds to the contact surface. A term is added to 𝑎0(𝑈, 𝑈): 

𝑐0(𝑈, 𝑈) = 𝑏 ∫ (𝐶1(𝑢3
2 − 2𝑥2

0𝑢3𝛼1 + (𝑥2
0)2𝛼1

2 + 𝑏2𝛼1
2 12⁄ )

𝑙

0

+ 

+𝐶2(𝑢′
3
2

− 2𝑥2
0𝑢3

′ 𝛼1
′ + (𝑥2

0)2𝛼 ′
1
2

+ 𝑏2𝛼 ′
1
2

12⁄ + 𝛼1
2))𝑑𝑥1.   (18.9.20) 

For the orthogonal 𝑥2 axis, the bases are replaced in (18.38)  𝑢3 by 𝑢2 and 𝑥2
0 by−𝑥3

0. 

(𝑔, 𝑈) = ∫ (𝑝𝑖𝑢𝑖 + (𝑚1 + 𝑓2𝑥3
0 − 𝑓3𝑥2

0)𝛼1 − 𝑚2𝑢3
′ + 𝑚3𝑢2

′ + 𝑚𝜔𝛼′1)𝑑𝑥1
𝑙

0
,  (18.9.21) 

𝑏(𝑈, 𝑈) = ∫ 𝜌(|𝐴|(𝑢𝑖𝑢𝑖 + 2(𝑥3
0𝑢2 − 𝑥2

0𝑢3)𝛼1 + 𝑅𝛼1
2) + 𝐼2𝑢3

′ 2
+ 𝐼3𝑢2

′ 2
+ 𝐼𝜔𝛼 ′

1
2

)𝑑𝑥1
𝑙

0
, (18.9.22) 

где 𝑅 = (𝑥2
0)2 + (𝑥3

0)2 + (𝐼2 + 𝐼3)/|𝐴|, 

𝑚1 = ∫ (𝑥2𝑓3 − 𝑥3𝑓2)
𝐴

𝑑𝐴 + 𝑝2𝑥3
0 − 𝑝3𝑥2

0, 

𝑚2 = ∫ 𝑥3𝑓1𝐴
𝑑𝐴, 

𝑚3 = − ∫ 𝑥2𝑓1𝐴
𝑑𝐴,              (18.9.23) 

𝑝𝑖 = ∫ 𝑓𝑖𝐴
𝑑𝐴, 

𝑚𝜔 = ∫ 𝑓1𝐴
𝜑𝑑𝐴. 

The temperature distribution over the cross-section is linear: 𝑇(𝑥) = 𝑇1 − 𝑥2𝑇2 − 𝑥3𝑇3, тогда              

          𝑔𝑇(𝑈) = ∫ 𝐸𝜁(𝑇1|𝐴|𝑢1
′ + 𝑇2𝐼3𝑢2

″ + 𝑇3𝐼2𝑢3
″)𝑑𝑥1

𝑙

0
.                         (18.9.24)          

Functional for the stability problem is: 

𝑎𝜎
′ (𝑈, 𝑉, 𝑉) = ∫[𝑁1(𝛼2

2 + 𝛼3
2) +

𝑙

𝑀1(𝛼2
′𝛼3 − 𝛼3

′𝛼2) − 2(𝑀2𝛼1)′𝛼3 + 2(𝑀3𝛼1)′𝛼2 + 

+(𝑀2𝛼1𝛼3)′ − (𝑀3𝛼1𝛼2)′ − 𝑚2𝛼1𝛼3 + 𝑚3𝛼1𝛼2 + 

+(𝑁1𝑟2 + 𝑀2𝐼32 − 𝑀3𝐼23 + 𝑀𝜔𝐼33)𝛼1
2]𝑑𝑥1/2 − 𝑑2(𝑓, 𝑉),     (18.9.25) 

где 𝑟2 = (𝐼2 + 𝐼3)/𝐴, 

𝐼33 = ∫ 𝜑(𝑥2
2 + 𝑥3

2)
𝐴

𝑑𝐴/𝐼𝜔, 

𝐼32 = ∫ 𝑥3(𝑥2
2 + 𝑥3

2)
𝐴

𝑑𝐴/𝐼2, 

𝐼23 = ∫ 𝑥2(𝑥2
2 + 𝑥3

2)
𝐴

𝑑𝐴/𝐼3, 

𝑁𝑖 = ∫ 𝜎1𝑖𝐴
𝑑𝐴, 

𝑀1 = ∫ (𝑥2𝜎13 − 𝑥3𝜎12)
𝐴

𝑑𝐴,  𝑀2 = ∫ 𝑥3𝜎11𝐴
𝑑𝐴,  𝑀3 = − ∫ 𝑥2𝜎11𝐴

𝑑𝐴. 

The first term under the integral in (18.9.25) is compressive flexure, the second is torsion 

flexure, the third-eighth is flexural torsion, and the last is compressive torsion. This term should be 

introduced only if the functional 𝑎0(𝑈, 𝑈) contains 𝐸𝐼𝜔𝛼 ′
1
2

 under the integral, otherwise, the 

critical force may be underestimated. The last three terms in (18.9.25) take into account the 

asymmetry of the load in the section, for example, the force is not applied at the center of gravity. 

 

Absolutely rigid body (ARB) 

All ARB deformations are equal to zero, so the functional 𝑎0(𝑈, 𝑈) is zero. Then, 

𝑏(𝑈, 𝑈) = 𝜌(|𝛺|𝑢𝑖𝑢𝑖 + 𝐼𝑘𝛼𝑘
2), 

(𝑓, 𝑈)𝛺 = 𝑝𝑖𝑢𝑖 + 𝑚𝑖𝛼𝑖, 

where 𝑝𝑖 = ∫ 𝑓𝑖𝛺
𝑑𝛺,  𝑚1 = ∫ (𝑥2𝑓3 − 𝑥3𝑓2)

𝛺
𝑑𝛺,  𝑚2 = ∫ (𝑥3𝑓1 − 𝑥1𝑓3)

𝛺
𝑑𝛺,  𝑚3 = ∫ (𝑥1𝑓2 − 𝑥2𝑓1)

𝛺
𝑑𝛺. 

𝑎𝜎
′ (𝑈, 𝑉, 𝑉) = 𝑚𝑖𝑗𝛼𝑖𝛼𝑗/2, 

where 𝑚𝑖𝑗 = − ∫ 𝑥𝑖𝑓𝑗𝛺
𝑑𝛺,   𝑖 ≠ 𝑗,  𝑚𝑖𝑖 = ∫ 𝑥𝑘𝑓𝑘𝛺

𝑑𝛺 , summing over 𝑘 ≠ 𝑖.                          
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If ARB is a segment, and 𝑥2 = 𝑥3 = 0, then 𝑚12 = −𝑚3, 𝑚13 = 𝑚2, 𝑚23 = 𝑚11 = 0. 

 

18.10 FINITE ELEMENT METHOD FOR A LINEAR STATIC PROBLEM 

 

All the considered problems (nonlinear, dynamic, for eigenvalues) are reduced to solving a 

sequence of linear ones. Linear problems are defined as the principle of possible displacements: 

𝑎(𝑈, 𝑉) = 𝑞(𝑉),    (18.10.1) 

where 𝑎(𝑈, 𝑉) is a symmetric positive definite bilinear functional; 

𝑞(𝑉) is a linear functional, the real displacement U and any possible displacement V are 

defined on the domain 𝛺 with boundary B and belong to the energy space H. 

Problem (18.10.1) must be reduced to a finite-dimensional one, to a system of linear algebraic 

equations (SLAE). One of the most versatile and common ways to do this is the finite element 

method (FEM) in displacements. 

The domain Ω is divided into finite elements (FE) 𝛺𝑟, which, depending on the dimension, 

are segments, convex polygons or polyhedra, 𝐵𝑟is the boundary of 𝛺𝑟. Different FEs do not have 

common interior points. The nodes 𝑋𝑗 of the finite element mesh are the vertices FE, nodes on the 

sides (edges) are also possible. Let us denote the maximum distance between grid nodes belonging 

to the same FE as ℎ. 

The division into finite elements is assumed to be consistent: if a vertex or edge of an element 

also belongs to another FE, then it is a vertex or edge of this other finite element. 

All functionals obtained by integration over Ω will be represented as the sums of the 

corresponding integrals over 𝛺𝑟, the functional obtained by integration over 𝛺𝑟, is denoted by index 

𝑟. 

The unknown FEMs (degrees of freedom) are the linear functionals 𝐿𝑘(𝑈), whose carriers we 

denote by 𝑆𝑘. The functionals 𝐿𝑘(𝑈) are linearly independent: if the equalities 𝑐𝑘𝐿𝑘(𝑈) = 0 are 

satisfied for all 𝑈 ∈ 𝐻, then all 𝑐𝑘 = 0. Basically, the functionals 𝐿𝑘(𝑈) are the values of the 

functions and their derivatives at the nodes, then 𝑆𝑘 coincides with one of the nodes. 

Unknowns in nodes: 

• displacements for 3D domains; 

• movements and rotations for bars and plates; 

• for the thin-walled bars, a seventh displacement is added. 

The joining of all the elements 𝛺𝑟, containing 𝑆𝑘 is called the star of elements 𝛺𝑘, which 

corresponds to the functional 𝐿𝑘(𝑈). 

The displacements are approximated by linear combinations of the basic functions 𝜇𝑘(𝑥): 

𝑈ℎ(𝑥) = 𝑑𝑘𝜇𝑘(𝑥).     (18.10.2) 

The set of functions of the form (15.10.2) is denoted by 𝐻𝜇. 

The basic functions 𝜇𝑘(𝑥) are nonzero only on  𝛺𝑘, and they satisfy the equalities: 

𝐿𝑘(𝜇𝑖) = 𝛿𝑘𝑖.      (18.10.3) 

From (18.10.3) follows the linear independence of the basic functions. 

From (18.10.3) with 𝑈 = 𝑈ℎ, 𝑉 = 𝜇𝑖, the FEM equations are obtained: 

𝑎(𝑈ℎ, 𝜇𝑖) = 𝑞(𝜇𝑖),     (18.10.4) 

which, using (18.10.2), can be written in the form: 

𝑑𝑘𝑎(𝜇𝑘, 𝜇𝑖) = 𝑞(𝜇𝑖).                (18.10.5) 
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The elements of the matrix 𝑎(𝜇𝑘, 𝜇𝑖) and the vector 𝑞(𝜇𝑖) are obtained by summing over all 

FE 𝛺𝑟 the elements of the matrices 𝑎𝑟(𝜇𝑘, 𝜇𝑖) and the vectors 𝑞𝑟(𝜇𝑖). Obviously, 𝑎𝑟(𝜇𝑘, 𝜇𝑖) ≠ 0 

only for 𝛺𝑟 ⊂  𝛺𝑘 ∩ 𝛺𝑖, 𝑞𝑟(𝜇𝑘) ≠ 0 only for 𝛺𝑟 ⊂  𝛺𝑘. 

The matrix 𝑎𝑟(𝜇𝑘, 𝜇𝑖) and the vector 𝑞𝑟(𝜇𝑖) are calculated in the local coordinate system 

associated with the element, corrected for hinges by Jordan eliminations, for rigid insertions - by 

means of the matrix corresponding to ARB displacements, and then are converted to the general 

one; a matrix composed of the coordinates of the unit vectors of the local system and the matrix of 

cosines are used. 

When calculating integrals, numerical integration is applied, namely, the cubature formulas: 

∫ 𝑓𝑑
𝛺

𝛺 = 𝛾𝑘𝑓(𝑥𝑘),  𝑥𝑘 ∈ 𝛺.               (18.10.6) 

The described method for constructing the system of FEM equations is rather simple and is 

based on the fact that most of the calculations are performed independently on each FE, which is 

one of the main algorithmic advantages of FEM. 

The second significant advantage of FEM is the ease of satisfying the boundary conditions. 

From (18.10.2) and (18.10.3) the equality 𝐿𝑗(𝑈ℎ) = 𝑑𝑗. Therefore, the homogeneous boundary 

condition 𝐿𝑗(𝑈ℎ) = 𝑧𝑗  is not necessarily required, it is sufficient to set 𝑑𝑗 = 𝑧𝑗 in (18.10.2) and in 

(18.10.5). The boundary conditions for stresses (forces) are always met since FEM uses the 

principle of possible displacements. 

The elements of the matrix 𝑎(𝜇𝑘, 𝜇𝑖) are nonzero only if the intersection 𝛺𝑘 ∩ 𝛺𝑖 contains at 

least one FE. Such matrices are called sparse or weakly filled. When solving the system (18.10.5) 

by the Gauss method, the fill-in (the number of non-zero elements) increases. To reduce the number 

of calculations and the time of solving the SLAE, the unknowns should be renumbered so that the 

fill-in becomes as small as possible. Such methods, based on graph theory are described in [18.53]. 

By solving the problem (18.10.5), the displacements of each FE in its coordinate system can 

be found, then the stresses for three-dimensional elements are calculated, and the forces for rods 

and plates. The forces in the bars are corrected for distributed loads. 
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18.11 CALCULATION OF STIFFNESS CHARACTERISTICS OF THE ROD SECTION 

 

Algorithms for calculating the cross-sectional area, the coordinates of the center of gravity, 

the position of the main central axes and moments of inertia are well known. To calculate the 

characteristics for torsion and shear, it is required [18.41] to solve the equations in section A: 

−(𝜕(𝐺𝜓𝑖/𝜕𝑥2)/𝜕𝑥2 − (𝜕(𝐺𝜓𝑖/𝜕𝑥3)/𝜕𝑥3 + 𝑝𝑖 = 0                                (18.11.1) 

with boundary conditions    

𝐺𝜕𝜓𝑖/𝜕𝑥2𝑛2 + 𝐺𝜕𝜓𝑖/𝜕𝑥3𝑛3 + 𝑞𝑖 = 0,                                            (18.11.2) 

где i = 1,2,3,  𝑝1 = 0,  𝑝2 = 𝐸𝑥2, 𝑝3 = 𝐸𝑥3, 𝑞1 = −𝐺𝑥3𝑛2 + 𝐺𝑥2𝑛3, 

𝑞2 = 𝐺𝜇[(𝑥2
2 − 𝑥3

2)𝑛2 + 2𝑥2𝑥3𝑛3]/4,    𝑞3 = 𝐺𝜇[2𝑥2𝑥3𝑛2 + (𝑥3
2 − 𝑥2

2)𝑛3]/4, 

where 𝐸, 𝐺, 𝜇 are Young's modulus, shear modulus and Poisson's ratio, which can be variable 

over the section area.  

The Neumann problem (18.11.1), (18.11.2) has a unique (up to an additive constant) solution 

if ∫ 𝑞𝑛𝑗𝛤
𝑑𝛤 = 0. These equalities follow from Green's formula: 

∫ 𝑞𝑛𝑗𝛤
𝑑𝛤 = ∫ 𝜕𝑞/𝜕𝑥𝑗𝐴

𝑑𝐴. 

To apply FEM, we define the problem (18.11.1), (18.11.2) in a form, similar to the principle 

of possible displacements: 

∫ (𝐺(𝜕𝜓𝑖/𝜕𝑥2 ∗ 𝜕𝑣𝑖/𝜕𝑥2 + 𝜕𝜓𝑖/𝜕𝑥3 ∗ 𝜕𝑣𝑖/𝜕𝑥3) + 𝑝𝑖𝑣)
𝐴

𝑑𝐴 + ∫ 𝑞𝑖𝑣𝑑
𝛤

𝛤 = 0.      (18.11.3) 

Suppose that 𝜑 = 𝜓1 − 𝑥3
0𝑥2 + 𝑥2

0𝑥 − 𝑐, где  𝑥2
0,𝑥3

0 — are the coordinates of the torsion 

center. 

Having found 𝜓𝑖 из (4.7), we determine 𝑥2
0, 𝑥3

0 and с from the conditions: 

∫ 𝐸𝑥2𝜑
𝐴

𝑑𝐴 = ∫ 𝐸𝑥3𝜑
𝐴

𝑑𝐴 = ∫ 𝐸𝜑
𝐴

𝑑𝐴 = 0:  

   𝑥2
0 = − ∫ 𝐸𝑥3𝜓1𝐴

𝑑𝐴/𝐸𝐼2,   𝑥3
0 = ∫ 𝐸𝑥2𝜓1𝐴

𝑑𝐴/𝐸𝐼3,   c = ∫ 𝐸𝜓1𝐴
𝑑𝐴/𝐸|𝐴|.            (18.11.4) 

Then the moment of inertia of torsion 𝐸𝐼2 and the sectorial moment of inertia E𝐼𝜔 are 

calculated: 

   GI1 = ∫ 𝐺((𝜕𝜓1𝐴
/𝜕𝑥2 − 𝑥3)2 + (𝜕𝜓1/𝜕𝑥3 + 𝑥2)2)𝑑𝐴,   EI𝜔 = ∫ 𝐸𝜑2

𝐴
𝑑𝐴.          (18.11.5) 

Next, using the functions 𝜓2,𝜓3 the shear areas can be found: 

   GF2 = (𝐸𝐼2)2/ ∫ 𝐺(𝜂22
2

𝐴
+ 𝜂23

2 )𝑑𝐴,   F3 = (𝐸𝐼3)2/ ∫ 𝐺(𝜂32
2

𝐴
+ 𝜂33

2 )𝑑𝐴.            (18.11.6) 

𝜂22 = 𝜇(𝑥2
2 − 𝑥3

2)/4 + 𝜕𝜓2/𝜕𝑥2,   𝜂23 = 𝜇𝑥2𝑥3/2 + 𝜕𝜓2/𝜕𝑥3, 

𝜂32 = 𝜇𝑥2𝑥3/2 + 𝜕𝜓3/𝜕𝑥2,   𝜂33 = 𝜇(𝑥3
2 − 𝑥2

2)/4 + 𝜕𝜓3/𝜕𝑥3. 

 

The method, described applies to thin-walled sections as well. The final elements are 

rectangles and the desired function on each rectangle is represented as: 

𝜓(𝑦2, 𝑦3) = 𝜓1(𝑦2) + 𝑦3𝜓2(𝑦2),                                         (18.11.7) 

where the axes 𝑦2, 𝑦3 are directed along the long and short, "thin-walled" sides. Substituting 

(18.11.7) into (18.11.3), a variational formulation for a thin-walled section can be got. 

This approach is universal and does not require different algorithms for open, closed, semi-

closed, etc. sections. 

 

The formulas for calculating stresses at an arbitrary point in the section are: 

𝜎11 = 𝐸𝑢1
′ − 𝑥2𝑢2

″ − 𝑥3𝑢3
″ + 𝛼1

″𝜑, 

𝜎12 = 𝐺(𝛼1
′ (𝜕𝜓1/𝜕𝑥2 − 𝑥3)/2 + 𝑢2

‴𝜂22 + 𝑢3
‴𝜂32), 

𝜎13 = 𝐺(𝛼1
′ (𝜕𝜓1/𝜕𝑥3 + 𝑥2)/2 + 𝑢2

‴𝜂23 + 𝑢3
‴𝜂33). 
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18.12 STATIONARY HEAT CONDUCTIVITY PROBLEM 

The heat equation [18.16] is derived from the law of conservation of energy and the Fourier 

law, in the stationary case it has the form: 

−𝑑𝑖𝑣(𝐾𝑔𝑟𝑎𝑑𝑇) = 𝑞,                                              (18.12.1) 

where 𝑇 is temperature; 

𝑞 is the density of heat sources; 

𝐾 — is the thermal conductivity coefficient; 

𝑄 = −𝐾𝑔𝑟𝑎𝑑𝑇 the heat flow (Fourier law). 

The application of FEM requires an integral identity similar to the principle of possible 

displacements. It is obtained from (18.12.1) and Green's formula for integration by parts: 

 

∫ 𝑞 ∗ 𝑡 ∗ 𝑑𝛺
𝛺

= ∫ −𝑑𝑖𝑣(𝐾𝑔𝑟𝑎𝑑𝑇) ∗ 𝑡 ∗ 𝑑
𝛺

𝛺 = ∫ 𝐾𝑔𝑟𝑎𝑑𝑇 ∗ 𝑔𝑟𝑎𝑑𝑡 ∗
𝛺

𝑑𝛺 − ∫ 𝐾𝜕𝑇/𝜕𝑛 ∗ 𝑡 ∗ 𝑑𝛤
𝛤

     

(18.12.2) 

 

Here 𝑡 is a variation of 𝑇. 

Three are three variants of possible boundary conditions: 

1) The temperature 𝑇 = 𝑇0  is set on the boundary section; 

2) On part of the boundary the heat flux 𝑄 = 𝑄0 is set 

3) On part of the boundary B_3, heat exchange with the environment takes place according to 

the law: 

𝑄 + 𝑘(𝑇 − 𝑇1) = 0, 

where 𝑘 is the heat transfer coefficient, 𝑇1 — is the ambient temperature; 

are implemented similarly to the given displacements 

Boundary condition 2) is implemented similarly to the load on a surface or a line. 

Boundary condition 3) is implemented similarly to elastic support with stiffness k, in addition, 

a load 𝑘·𝑇1. 

 

 

18.13 STATIONARY FILTRATION PROBLEM 

 

The filtration equation [18.16] is obtained from the law of conservation of mass and Darcy's 

law, in the stationary case it has the form: 

−𝑑𝑖𝑣(𝐾𝑔𝑟𝑎𝑑ℎ) = 0,                                                   (18.13.1) 

ℎ = 𝑝/𝜌𝑔 + 𝑧,                                                        (18.13.2) 

where 𝑝 is pressure; 

ℎ is height of liquid; 

𝜌 is the density of the liquid; 

𝐾 is the filtration coefficient; 

𝑣 = −𝐾𝑔𝑟𝑎𝑑ℎ filtration rate (Darcy's law). 

The application of FEM requires an integral identity similar to the principle of possible 

displacements. It is obtained from (18.13.1) and Green's formula for integration by parts: 

 

0 = ∫ −𝑑𝑖𝑣(𝐾𝑔𝑟𝑎𝑑ℎ) ∗ 𝑞 ∗ 𝑑
𝛺

𝛺 = ∫ 𝐾𝑔𝑟𝑎𝑑ℎ ∗ 𝑔𝑟𝑎𝑑𝑞 ∗
𝛺

𝑑𝛺 − ∫ 𝐾𝜕ℎ/𝜕𝑛 ∗ 𝑞 ∗ 𝑑𝛤
𝛤

. 

(18.13.3) 

Here q is a variation of p. 
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From the equality to zero of the integral over B, we obtain the boundary conditions: 

- on an impenetrable surface 𝐾𝜕ℎ/𝜕𝑛 = 0, this condition does not need to be set in FEM as it 

will be fulfilled automatically; 

- on the free surface: 

𝑝 = 0.                                                            (18.13.4) 

It is more convenient to set the boundary conditions for pressure rather than for height of 

liquid. The inhomogeneous condition (18.13.4) is also easily realized. 

Substituting (18.13.2) into (18.13.3), we obtain the FEM equation: 

∫ 𝐾/(𝜌𝑔)𝑔𝑟𝑎𝑑𝑝 ∗ 𝑔𝑟𝑎𝑑𝑞
𝛺

∗ 𝑑𝛺 + ∫ 𝐾𝜕𝑞/𝜕𝑧 ∗ 𝑑𝛺 = 0
𝛺

.                          (18.13.5) 

The second term in (18.13.5) is "load". From (18.13.5) and the boundary conditions we find 

the pressure. 

The resulting pressure is transmitted for further calculation of the soil mass, the dependence 

for stresses is used: 

𝜎𝑖𝑗 = 𝜎𝑖𝑗
0 + 𝑝𝛿𝑖𝑗. 

That is, the pressure will give an additional load, which is calculated similarly to the 

temperature one. When calculating, stresses:  𝜎𝑖𝑗
0 = 𝜎𝑖𝑗 − 𝑝𝛿𝑖𝑗 are analyzed. 

 

 

18.14 NON-STATIONARY PROBLEM FOR THERMAL CONDUCTIVITY 

 

In matrix form, the non-stationary heat conduction equation is written as: 

[С] ∙
𝜕

𝜕𝑡
{𝑇} + [𝐾] ∙ {𝑇} = {𝐹} (18.14.1) 

where [𝐾] – a positively defined symmetric matrix of thermal conductivity coefficients, or 

simply, a thermal conductivity matrix; 

[𝐶] is the heat capacity matrix; 

{𝑇} and {𝐹} are the temperature and right-hand side vectors, respectively. 

  

SP LIRA 10 uses an implicit integration scheme: 

[С] ∙
𝑇𝑖+1 − 𝑇𝑖

Δ𝜏
+ [𝐾] ∙ 𝑇𝑖+1 = 𝐹𝑖 (18.14.2) 

where Δτ is the time step (discretization step); 

𝑇𝑖, 𝑇𝑖+1 are the vectors of temperatures at the current and next moments of time; 

𝐹𝑖 is the vector of the right side at the current time. 

 

Boundary conditions for the problem of non-stationary heat conduction are similar to the 

boundary conditions implemented for stationary heat conduction (see Section 18.12), but with the 

ability to assign their variability in the time domain. 

 


